A new nonlinear genetic algorithm for numerical optimization
نویسندگان
چکیده
Through mechanism analysis of simple genetic algorithm(SGA),every genetic operator can be considered as a linear transform. So some disadvantages of SGA may be solved if genetic operators are modified to nonlinear transforms. According to the above method, nonlinear genetic algorithm is introduced, and different nonlinear genetic operators with some probability are designed and applied to numerical optimization problems. The optimization computing of some examples is made to show that the new genetic algorithm is useful and simple.
منابع مشابه
A New Multi-Objective Optimization Method Based on Genetic- Fuzzy Algorithm and its Application in Induction Motor Speed Control
In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplie...
متن کاملA New Multi-Objective Optimization Method Based on Genetic- Fuzzy Algorithm and its Application in Induction Motor Speed Control
In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplie...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملRESOLUTION OF NONLINEAR OPTIMIZATION PROBLEMS SUBJECT TO BIPOLAR MAX-MIN FUZZY RELATION EQUATION CONSTRAINTS USING GENETIC ALGORITHM
This paper studies the nonlinear optimization problems subject to bipolar max-min fuzzy relation equation constraints. The feasible solution set of the problems is non-convex, in a general case. Therefore, conventional nonlinear optimization methods cannot be ideal for resolution of such problems. Hence, a Genetic Algorithm (GA) is proposed to find their optimal solution. This algorithm uses th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003